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The manner in which fluid driven through a channel of width a responds in 
anticipation of a severe asymmetric distortion (e.g. to the wall or interior con- 
ditions downstream) is discussed when the oncoming flow is fully developed, the 
characteristic Reynolds number K is large and the whole motion remains laminar. 
Far ahead of the disturbance, at distances O(aK+), there occurs a free interaction 
which triggers a small displacement in the core, generating viscous layers near 
both walls; the reiatively large induced pressure gradient acting across the 
channel is then found to sustain the growth of this displacement. Numerical 
solutions of the fundamental nonlinear problem show that one layer separates 
in a regular fashion, but that beyond separation the other layer, under com- 
pression, produces a singularity in the interaction. Analysis of the singularity 
based on a self-similar structure in the partly reversed flow then leads to a 
description of the nonlinear flow features nearer the distortion which seems to 
have strong physical significance. The major implication is that the flow will 
have already separated a t  one wall, and developed a definite nonlinear character 
quite distinct from that of the original Poiseuille flow, long before it reaches 
finite distances from the distortion. The separation point is predicted to be a 
distance 0.49aK+ ( + O(a)) ahead of the particular finite distortion. Comparisons 
of this and other predictions with computed solutions of the full Navier-Stokes 
equations show reasonable agreement. 

1. Introduction 
The principal question around which the present work is centred concerns the 

effects on the otherwise undirectional flow field within a long straight rigid- 
walled channel of a severe asymmetric disturbance at  some downstream station. 
If, for example, a constriction is introduced a t  the channel wall or in the interior, 
if the channel branches, or if extra fluid is injected from the wall, how does the 
laminar flow of the incompressable fluid in the channel ahead of the disturbance 
anticipate the presence of this alteration in the boundary conditions? We shall 
assume that the flow sufficiently far upstream is fully developed, that it remains 
steady and two-dimensional throughout and that the characteristic Reynolds 
number K is large. Our especial interest then is in the most realistic cases, where 
the particular disturbance is large enough to provoke a finite change in the flow 
pattern. Thus we should like to gain some knowledge of the upstream response 
of the fluid when the shape of the channel is changed appreciably, by an abrupt 



632 F.  T. Smith 

halving of its width, for instance, or when the injection rate is comparable with 
the velocity of the oncoming Poiseuille motion. 

In the corresponding exterior flow situations where one of the plane walls is 
absent and the inviscid mainstream is uniform, say, a severe wall disturbance, 
no matter how far from the leading edge, could well provoke separation of the 
boundary layer upstream. The free interaction here by which the boundary layer 
evolves from the Blasius profile to a separated profile in supersonic flow is 
described by the triple-deck theory of Stewartson (1974). The displacement 
thickness starts to increase, promoting a decrease in the pressure just outside 
the boundary layer which in turn reinforces the thickening process, and so the 
boundary layer moves towards a separated structure (Stewartson & Williams 
1969, 1973). Treatments of injection, cornering and indentation problems on 
those lines have been given by Smith & Stewartson (19731, Stewartson (1970) 
and Smith (1973). 

In  channels and pipes, on the other hand, if we move the disturbance further 
and further from the inlet the walls tend to suppress this type of upstream 
influence, as Smith (1976 c) shows, and ultimately such a mainstream interaction 
becomes out of the question because the oncoming flow is fully developed. For 
general pipe flows it seems not unlikely that the upstream influence is then largely 
confined to a distance upstream that is comparable with the typical pipe width 
(cf. Smith 1976a, 3). For channel flows, however, Smith (19763) has shown that 
a small asymmetric disturbance at the walls can generate a large-scale upstream 
effect, causing the motion to split up into essentially three regions. These regions 
are a core motion, involving small inviscid perturbations to the oncoming 
Poiseuille flow, and two viscous nonlinear wall layers, where the flow is driven 
by the induced pressure gradient and crucially affected by the displacement of 
the core. The upstream influence remains insignificant unless the height of the 
indentation, for example, is as large as K-+ relative to the channel width a, in 
which case the flow is affected appreciably a t  large distances [O(aK+)] upstream 
and separation is likely to occur there. (A linearized analysis by Smith (19763) 
confirms these trends.) Increasing the size of the disturbance then presumably 
forces the separation point further upstream and generally causes an increase in 
the size of the upstream response. Consequently we are led to the contention 
that, when the height of the asymmetric indentation is even greater than this 
order of magnitude, the necessary adjustment of the flow upstream must involve 
all or part of the underlying structure of the free interaction induced by a 
relative height K+. In  other words, a deviation from the oncoming flow is most 
likely to occur first at  a distance O(aK+) ahead of the particular distortion. (This 
implies that Wilson’s (1969) conclusions on upstream influence are incomplete.) 
Hence, for the problem of motion through a channel whose width is altered 
sharply, asymmetrically and by a finite amount, at some paint, the flow responds 
by initiating a nonlinear free interaction far upstream. This interaction can be 
expected to alter tlhe flow properties substantially even before the obstacle is 
reached, and must be such that the fluid can then pass through the constriction 
or dilation. 

The orders of magnitude of the velocities and pressure, and the critical length 
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scale on which the upstream adjustment occurs, are determined in $ 2  below 
and the formal asymptotic expansion of the solution for K 9 1 is set down in $ 3. 
The upstream response is found to be due to the pressure gradient acting across 
the channel, which is induced by the slight displacement of the core. For, if the 
pressure perturbation near one wall is positive, the viscous layer there tends to 
thicken. So the other wall layer thins to conserve the mass flux, and the transverse 
momentum thus produced generates a transverse pressure gradient. The pressure 
near tjhe second wall then turns out to be of opposite sign and consequently tends 
to accentuate the compression of the second wall layer, sustaining the interaction 
process. The ensuing development of the flow is nonlinear and the necessary 
numerical solution, an integration of the two wall layers simultaneously to 
calculate the pressure and core displacement, is described in $4. Separation is 
found to occur in a regular fashion in one of the layers but downstream the 
compression of the other layer starts to dominate the motion, and the numerical 
results point to the occurrence of a singularity a t  a finite distance (on the long, 
free-interaction, scale) beyond separation. An analysis of the ultimate structure 
of the free interaction, based on the existence of such a singularity and presented 
in $ 5, is apparently self-consistent when a self-similar form is assumed in the 
reversed flow zone, and despite the arbitrariness (due to the features of the flow 
upstream) in the local solution there comparison of the theory with the cal- 
culations indicates general agreement. The implications for the motion even 
nearer the severe disturbance, i.e. at distances upstream that are comparable 
with the channel width, are discussed in $ 6 .  

The overall conclusion is that the flow a t  one wall must separate a t  a large 
distance ( = 0.49 ah'+) upstream. Consequently, and contrary to the often- 
conjectured model of flow ahead of a finite indentation, say, the separation 
streamline does not leave the wall a t  a finite angle but a t  an angle that tends to 
zero as the Reynolds number tends to infinity. While still a t  finite distances 
from the disturbance, the flow has already evolved a nonlinear character quite 
distinct from that of the original Poiseuille flow. Thus the local motion at finite 
distances from the particular asymmetric disturbance does not join smoothly 
on to the original Poiseuille form but instead is a continuation of the ultimate 
form of the long-scale interaction. Qualitative and quantitative comparisons 
( $  6) with numerical solutions of the full Navier-Stokes equations tend to bear 
out the existence of this long-scale upstream adjustment in asymmetric flows. 

We emphasize that our concern here is with finite asymmetric disturbances 
(and with laminar flow). The nonlinear upstream interaction outlined above 
would not occur in a finite symmetric case, and the necessary upstream adjust- 
ment in such a case remains undetermined by this work. 

2. Non-dimensionalization and the critical length scale 
Letting - g  (g > 0)  denote the pressure gradient dp*/dx* driving the flow far 

upstream in the channel, we write the pressure as agp(x, y), where a is the channel 
width and x* = ax and y* = ay signify distances downstream and across the 
channel, respectively, from an origin fixed in the lower wall (y = 0) of the un- 
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disturbed channel. The velocities a2gp-lv-l(u, w) in the (x, y) directions then 
satisfy the non-dimensional Navier-Stokes equations 

divu = 0, K(u.V)u = -Vp+V2u, (2.1) 

in the usual notation, u = (u, w) being zero on the walls y = 0,1 upstream of any 
change in the boundary conditions. The R,eynolds number K here is defined by 

K = ga3/pv2, ( 2 . 2 )  

p and v standing for the density and kinematic viscosity of the fluid, and we 
assume henceforth that K 9 1. Far upstream the motion is supposed to have the 
fully developed Poiseuille form 

u = &(y- y2) = U,(y), 2, = 0, p = P o -  x, (2.3 

where po is an O( 1) constant. 
Smith (1976~) b), in studying the effects of small constrictions on channel 

flow, has already demonstrated the importance of the regime a ,-., K-3, where a 
represents the typical asymmetric deviation of the slope of the channel wall 
from its undisturbed direction. The following order-of-magnitude considerations 
show how the critical scalings of the velocities, pressures and lengths involved 
are derived for the free interaction which takes place far ahead of a constriction 
even when that constriction is not small. (An alternative derivation of the scalings 
and structure of the solution emerges from an examination of the initial character 
of the solution to a corner problem when a - K-1, or of the flow at a junction of 
two channels, when analysed according to conventional boundary-layer theory. 
Results (2.8) below follow in much the same way as those Stewartson (1969) and 
Messiter (1970) deduced for the structure of the triple deck close to the trailing 
edge of a flat plate in a uniform external stream.) The theory that we put forward 
for the upstream interaction here is founded on the notion that such an inter- 
action in an asymmetric channel takes place chiefly because of the generation of 
a significant transverse pressure gradient in the main inviscid core of the fluid. 
The core motion involves a simple inviscid but rotational displacement of the 
oncoming Poiseuille motion (2.3), but since the velocity in (2.3) reduces to zero 
at the walls the displacement induces viscous interactions in thin layers near 
both walls. On the other hand, the pressure at a given station downstream takes 
a value in the layer at the top wall different from that in the lower layer because 
of its transverse variation in the core, and it is this difference that is the cause 
of the self-sustaining interaction between the two pressures and the displacement 
effect. 

Thus in the core flow the stream function $(x,y), defined by u = a$-/ay, 
v = - a$/ax and $( - co, 0) = 0 (so that $-( - 00, y) = $y2 - Qy3 = $-&), say), is 
effectively 

Here the displacement function A ( X )  is a function of X = x/A to be determined 
and the unknown critical streamwise length scale A is supposed to be 9 1. The 
unknown perturbation parameter 6 < 1 represents the thicknesses of the viscous 
wall layers, which therefore perturb the Poiseuille flow by the same amount. 

$ = $rn(Y+64X)) .  (2.4) 
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The continuity and streamwise momentum equations are then satisfied to leading 
order provided that A < GK,’which is justified a posteriori. h signifies the unknown 
order of magnitude of the pressure force, but the transverse momentum equation 
gives 

where a prime is used to denote differentiation with respect to the assigned 
independent variable. As the bottom wall is neared the solution (2.4) is rendered 
invalid when y N 6, however, and there viscous resistances must play a major 
role, implying in the x momentum equation the balances 

ap/ay = v:(y) A ” ( X )  (K6 /hP) ,  (2.5) 

KS2 h 1 
A A S  

- = - = -  

since u is now O(6).  The same balances of orders arise in the top-wall viscous 
layer of thickness - 6. The final requirement that fixes the characteristic scales 
A, 6 and h is that 

which allows the transverse pressure gradient ap/ay to be non-zero. From (2.6) 
and (2.7) we then obtain the crucial orders of magnitude 

K6/hA2 = 1, (2.7) 

A=Kk’3, S = K - 8 ,  h = K $  (2.8) 

for the x length scale, the thicknesses of the two viscous layers and the pressure 
distribution. 

Since the ratio of the y length scale to the x length scale is K-9, it follows that 
if the disturbance to the shape of the wall is of typical inclination a < K-8 
then splay < 1, the free interaction that is found to develop under (2.8) is not 
substantial and a linearized solution is possible. This was the situation t,hat 
Smith (1976a, b)  concentrated on but his work also elucidated the importance of 
the pressure variation ap/ay. From (2.5)-(2.8) and Smith’s work we may conclude 
that if a N K+ the interaction will be nonlinear and a computational task will 
be set, with flow separation likely to occur on one of the walls near the start of 
the indentation, and that as a increases beyond O(K-*) the separation point will 
be pushed further and further upstream. Our interest is almost wholly in the 
second case, where the flow gradually develops away from the Poiseuille form 
long before the actual indentation (or other asymmetric disturbance) is reached. 
It is shown below that the free interaction, occurring when (2.8) holds and the 
Poiseuille motion upstream is slightly perturbed, in fact explains the nature of 
the motion upstream in the most physically interesting situation, i.e. where 
01 is O(1). 

The formal expansion procedure stemming from the scalings (2.8) is set out 
in $ 3  below for the three regions of flow. Section 4 is then devoted to a description 
of the necessary numerical approach and its results, which give the structure 
of the flow field as the assumed indentation downstream is approached, both on 
the long [O(aK+)] length scale (studied in 9 5 )  and on the O(a) length scale (see 8 6). 
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3. The three regions of flow 
Since powers of K 3  are involved it is convenient to use the parameter 

E = K +  ( < I ) ,  (3.1) 

so that in general the solution is expected to proceed in integral powers of 8 

(and In e) ,  according to 5 2. Then the postulate is that, on a critical length scale 
defined where the streamwise co-ordinate 

x = ex (3.2) 

is O(l) ,  the flow subdivides into a core motion I for 0 < y < I and two viscous 
layers I1 and 111 arising for y and 1 - y of order €2 respectively. 

Starting with region I, we expand the solution in the form 

(3.3) i u = U,(y) + e2ul(X, y) + e4.u2(X, y) + O(ss), 

v = e3v1(X, y) + e5v2(X, y) + O(e7), 

P = e-3P1(X, y) +e-1P2(X, Y> + O(l).  

From substitution into the equations of continuity and x momentum in (2.1), 
and neglecting terms of relative order €2, the solutions for the perturbations 
u1 and w1 that merge with the upstream solution (2.3) as X-t-co are then 
(Stewartson & Williams 1969) 

u1 = A m  U:,(Y), wl = -A' (X)  G ( Y ) ,  (3-4) 

with A( -a) = 0. The y momentum equation then yields effectively (2.5) to 
first order, so that, on integration with respect to y, 

where P ( X )  = pl(X, 0)  is a function of X to be determined, with P( -m) = 0. 
We postulate that the functions A ( X )  and P(X) are non-zero and so to first 
order the solution (3.4) represents a wholesale displacement of the oncoming 
streamlines by an amount - A ( X ) ,  accompanied by the pressure variation (3.5) 
across the channel. Hence as y+ O(e2) the expansion (3.3) becomes inaccurate 
since U,(y) ( w gy) tends to zero whereas u1 ( M & A ( X ) )  is non-zero, and the lower 
viscous layer I1 is thereby invoked. Similarly, the upper viscous layer 111 is 
necessary as y+ 1. The subsequent perturbations in (3.3) confkm these trends 
but lead also to the logarithmic behaviour in (3.6) and (3.8) below. 

In  I1 we set y = s2Y, where Y is an order-one co-ordinate, and express the 
flow properties as 

(3.6) 
p = c3P1(X, Y)+O(e-llns), 

owing to the expansion (3.3) and the solutions (3.4) and (3.5). The Navier-Stokes 
equations then show, to O ( c 5 )  in they momentum equation, that P,isindependent 
of Y .  Hence PI = P ( X ) ,  to assure compatibility with (3.5) a t  y = 0,  and to 

1 = ~ ( x ,  Y )  +o(e41ne), 

2, = e5v(x, Y )  +0(€71n4, 
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O(e3) and 0(c2) in the continuity and x momentum equations respectively the 
boundary-layer equations 

( 3 . 7 4  

are the governing equations for 11. The boundary conditions become 

U =  V = O  a t  Y = O ,  U N $ ( Y + A ( X ) )  as Y-3) (3.7b) 
U N $ Y  as X-t-00 

from the no-slip constraint at the wall, from matching with I as Y 4 - 0 0  and 
from continuation with the Poiseuille solution (U = &Y, V = P = A = 0) far 
upstream. Boundary and matching conditions and linear equations may be 
written down for the lower-order terms of (3.6), but the essential problem of 
region 11, (3.7a, b), is clearly insufficient to determine the induced pressure force 
P ( X )  and displacement function A ( X )  driving the flow. In addition it is necessary 
to consider the upper viscous layer I11 that borders the wall y = 1. 

With the appropriate normal co-ordinate 2 = c2( 1 - y) defining the wall 
layer 111, the solution is expanded in similar fashion to (3.6): 

Here the result @/a2 = 0 from the transverse momentum equation has been 
anticipated. As in I1 the controlling equations for 111 are the boundary-layer 
eauations 

( 3 . 9 4  

where P ( X )  = P ( X )  +&4”(X), (3.9b) 

subject to the boundary conditions 

) (3 .94  
U =  F = o  at Z = O ,  O - + ( Z - A ( X ) )  as Z-JOO, 

Here the induced pressure P ( X )  in I11 is fixed by matching the pressure with that 
in I at the edge of the upper layer, and the boundary conditions ( 3 . 9 ~ )  follow 
as in 11. 

The fundamental problem of the three-layer system is therefore to solve 
(3.7a, b)  and ( 3 . 9 ~ 4 )  simultaneously, with the pressure P(X) and dispIacement 
A ( X )  unknown. Clearly one solution of this system is U = +Y,  0 = $2, 
V = = P = P = A = 0, which means that the Poiseuille flow continues un- 
disturbed. However, Smith (19763) showed that in the solution for X -t - co 
there is an apparent non-uniqueness (the non-uniqueness is resolved by the 
downstream conditions) and another motion is possible which gradually evolves 
away from the Poiseuille form. For X large and negative, the pressure in I1 is 
small and from (3.7)-(3.9) must be given by 

P ( X )  x bleex+O(e28*). (3.10) 

U - & Z  as X-t-00. 
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The entire flow can then be described as a small perturbation of the Poiseuille 
solution, the magnitude of the perturbation being dependent solely on the 
unknown constant b,. The perturbation solutions and the constant 6 can be 
determined by the need for consistency between the disturbances in I1 and 111, 
as follows. In I1 

(3.11) 
U M QY - b, eexf i (  Y )  + O ( e 2 @ X ) ,  

V E b, Beexjl( Y )  + O(e2ex), 

and with terms O(e2es)  in (3.7a, b )  neglected, the solution for j,( Y )  gives the 
condition 

,5,/3b, = 286)/3 Ai’ (0 ) ,  (3.12) 

where A ( X )  M ,81eeX+O(e2ex). (3.13) 

The constant ,5, is to be found in terms of b,, and Ai is the Airy function. Similarly 
in I11 the expansion 

(3.14) 
0 M $2 - b, eexfi(2) + O(e2e,Y), 
P E b, Beexfl(Z) + O(e2ex) 

holds and solution for the functionf,(Z) satisfying the constraints at  2 = 0 and 
as 2 -+ co vields 

1 

(3.15) 

since the pressure in I11 is (b, + &B2,8,) eex approximately. Eliminating ,8,/3b, 
between (3.12) and (3.15) therefore gives the value of 6 as 

8 = 21:-45Ai’(0)]8 = 5.731 ..., (3.16) 

so that ,5, = - 240b, 0-2 and only the constant b, remains undetermined. For a 
problem such as the determination of the flow through the channel when the 
lower wall is distorted into the shape Y = hP(X) ,  where the constant h N 1 
and P( co) = 0,  the value of b, would be fixed by the requirement that t,he flow 
should also return to the Poiseuille form far downstream. A shooting method, 
akin to that used in triple-deck calculations (Stewartson 1970; Smith & Stewart- 
son 1973), would be called for. We are interested instead in the nature of the free 
interaction alone and hence wish to discover the ensuing nonlinear development 
of the flow in I1 and I11 when the motion upstream is slightly disturbed, as in 
(3.10)-(3.16), but when the no-slip conditions at Y = 2 = 0 are satisfied through- 
out. Thus our approach is analogous to that of Stewartson & Williams (1969) 
and Stewartson (1  970), who considered, respectively, small positive and negative 
values of the induced pressure perturbation in their fundamental problems. 
However, in contrast with their work, where the positive and negative upstream 
disturbances produced quite distinct downstream solutions, in our study there 
is effectively only one form of free interaction. If b, > 0 then initially in I1 the 
pressure rises and the skin friction 7(X) = (aU/aY),,, falls from the undisturbed 
value 0.5 (see Smith 19763) as the displacement - A ( X )  rises, while in I11 the 
pressure drops, the skin friction f ( X )  = (aO/aZ) (2 = 0 )  increases and the 
displacement effect for 111, i.e. + A ( X ) ,  decreases. In  physical terms, the small 
increase in pressure near the lower wall causes the viscous layer there to expand, 
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and consequently the upper layer to contract, a motion which sets up a negative 
pressure gradient across the channel. This produces a small decrease in pressure 
near the upper wall, tending to induce an even greater compression of the 
viscous layer there, and so the process is reinforced. If b, <: 0 the roles of I1 and 
I11 are simply interchanged. Hence the case b, > 0 covers both situations and 
we can expect that as X increases from -a the lower layer I1 will continue its 
trend towards separation whereas as in I11 the flow will be increasingly com- 
pressed. One of the major questions then concerns the ultimate behaviour of 
this free interaction. Does the solution steadily evolve an asymptotic separated 
structure as X-foc), as in Stewartson & Williams (1969, 1973), or is it  dominated 
by a singularity at a finite value of X (cf. Stewartson 1970)? The answer, and 
an appreciation of the nonlinear evolution of the motion, necessitates a numerical 
integration of the equations dictating the flow in the lower and upper viscous 
zones, which is described in the next section. 

4. Numerical results 
To study the nonlinear behaviour that develops from the small perturbation 

to the Poiseuille solution a numerical approach similar to that used by Smith & 
Stewartson (1973) and Smith (1974) (see also Keller & Cebeci 1971) was adopted. 
The governing equations ( 3 . 7 ~ )  and ( 3 . 9 ~ )  of I1 and I11 were expressed as 
first-order equations by setting 

I s = aY/8Y, t = 8s/aY in 11, 
c = aTpz, e = aclaz in 111, 

where Y(X, Y )  and T(X:  2) are the stream functions in I1 and I11 ( U  = aY/aY, 
V = - aY/aX, 0 = 8 9 / 8 2  and P = -&!/ax with Y(X, 0)  = y ( X ,  0 )  = 0) .  Thus 

Y? - & ( P + L ~ ( X ) ) ~ + ~ P ( X )  as Y-fco, 

from analysis of the solutions to ( 3 . 7 ~ )  and ( 3 . 9 ~ )  for Y > 1 and 2 > I respec- 
tively; here we have introduced the function D ( X )  = B’(X) = A”(X) .  Layers I1 
and I11 are represented respectively by J and K mesh points spaced at  distances 
h and apart across each layer. Given the solution at a particular X station, 
(3.7a), (3.9a) and (4.1), applied in discrete form, provide 3 J + 3 K - 6  equations 
for the 3 J +  3K + 4 unknowns, namely B, D,  A ,  P and the values of Y, s, t ,  T, 
c and e at each mesh point, at the next station downstream. The no-slip con- 
straints together with (4.2) and its Y and 2 derivatives yield eight more relations 
and the final two discrete first-order relations are those between B, D and A .  
The solution can then be advanced forward safely in the X direction, provided 
that U and 0 remain positive (see below, however), the 3J + 3K + 4 nonlinear 
equations being solved iteratively, with a tolerance q between successive iterates 
setting the criterion for convergence to the solution at each station. 

The calculations were usually initiated by perturbing the pressure P by a 
small amount P-, but with the undisturbed solutions for the velocities. Typically 
the values P-, = and q = lo-’ were chosen, and a step length Ax = 0.01 

( 4 4  I - &(Z-A(X))2+2P(X)+,1,D(X) as Z+co 
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FIGURE 

-0.1 L 

1. Solutions for P and r = (BU/BY),,, as functions of x. 

X 

FIGURE 2. Plots of A ,  3' = (aO/BZ),=, and P = P+&jA" vs. X .  

in the z direction and mesh widths h = 0-1 and = 0-02 in I1 and 111. These 
values, and those of J and K (typically loo), were selected because of the nature 
of both the initial form (3.10)-(3.16) and the terminal form (see $5) of the free 
interaction. Tests of the proposed second-order accuracy of the method proved 
favourable and as expected the choice of a different value, 5 x  for P-, 
merely provoked an effective shift in the origin for X .  

Some of the results obtained during the calculations are summarized in 
figures 1-4. As X is increased from its initial value X = X-, the skin friction 
7 ( X )  in the lower layer I1 continues to fall and the pressure P ( X )  to rise (see 
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U 
FIQURE 3. Velocity profiles in the separating layer I1 

of the free interaction: X - ,  = - 1.258. 

a 
FIGURE 4. Some profiles of 0 in layer 111: X - ,  = - 1.258. 



642 F .  T. Xmith 

x - x-, - A  
(0 0 
1.43 3.737 
1-45 4.326 
1.47 5.044 
1.49 5.932 
1-51 7.051 
1-53 8.491 

.Y 
0.5 
8.622 

10.81 
13-79 
17.92 
23.82 
32.50 

71 
0.5 
0.5485 
0.5306 
0.5169 
0.5089 
0.5037 
0.5012 

P 
0 
0.11416 
0.11495 
0.11552 
0.11591 
0.1 1617 
0.11634 

- T  - urnin 

- 0.5 0) 
0.0547 0.0319 

0.0346 0-0479 
0.0409 0.0363 
0-0340 0.0354 
0.0275 0.0343 
0.0224 0.0320 

TABLE 1. Sample values of A ,  t, tl, P ,  rand Urn,,, on nearing the end of the integration 
range (TI = ao(X, l)/aZ, U , ,  = minimum value of U ,  X - ,  = - 1.258). 

figure I),  initially according with the behaviours indicated in (3.10)-(3.16). The 
displacement A ( X )  and pressure P ( X )  +&D(X) = f' in layer I11 both continue 
to decrease and the skin friction ?(X) rises increasingly, as shown in figure 2. 
Separation of the flow in I1 (T = 0) is eventually reached, with P = P, = 0.0909 
and A = A,  = - 1.275 (and for definiteness we take the separation point to be 
the origin for X ) ,  and it appears to be a regular phenomenon. The Goldstein 
(1 948) singularity that arises in classical boundary-layer theory a t  separation 
is absent here by a reasoning similar to that of Stewartson & Williams (1969) 
and Stewartson (1974), since the displacement and pressure are intimately 
related and must adjust their values at separation to ensure a regular solution. 
I n  brief, a singularity in T would provoke a singularity in A ,  and hence a much 
worse singularity in D, which cannot be consistent with the assumptions of the 
Goldstein singularity structure. Beyond separation, despite the problems of 
non-uniqueness (see also 3 5 below) posed by the upstream-moving part of the 
flow in 11, the solutions obtained by simply allowing the calculations to proceed 
without modification in X > 0 seemed to be physically reasonable. The shear 
stress 7 ( X )  attains a negative minimum and then starts to increase slowly and 
the pressure curve in I1 gradually flattens out. In the upper layer 111 the pressure 
and displacement continue their downward (and the wall shear stress its upward) 
plunge. The comparative smallness of the backward velocities in I1 suggested 
the alternative use of the Reyhner & Flugge-Lotz (1968) approach of neglecting 
UaUjaX when U -= 0. This was also applied but the results differed little from 
those shown. 

Graphs of the velocity profiles in regions I1 and I11 are drawn in figures 3 
and 4 for various values of S .  It is seen that in I11 the fluid is pressed increasingly 
onto the wall 2 = 0 and that the part of I11 where the shear differs significantly 
from 0.5 becomes ever smaller. I n  I1 the flow features suggest that a downstream 
structure analogous to that of Stewartson & Williams (1973) might emerge as 
X-tm.  For, after reversed flow sets in a t  X = 0, the viscous effects begin to 
concentrate around the detached streamline Y = 0, beneath which the reversed 
flow velocities and shear are relatively small, and above which the shear attains 
its edge value 0.5 quite rapidly, and this is essentially the phenomenon described 
by Stewartson & Williams. However, the results for ? ( X ) ,  P ( X )  and A ( X )  
indicate firmly that such a form is highly unlikely and instead point to the 
occurrence of a singularity a t  a finite value of X (X = X,, say), downstream of 
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separation, beyond which the solution cannot be continued. Table 1 and figures 
5 and 6 below, taken at  their face value, bear out this assertion. We show in the 
next section that an asymptotic description of the solution as 

- x = xo-x-+o+ 
may be constructed which appears to be self-consistent and broadly in line with 
the calculated results, as far as the latter could be taken without divergence, 
near the singular point X = X,. 

5. The ultimate structure of the free interaction 
First, in the upper viscous region I11 the nature of the singularity is similar 

to that discussed by Stewartson (1970), the shearing flow being virtually un- 
affected until the wall itself is almost reached, so that a thin slip layer is induced. 
To find the exact details of the compression here we seek in the slip layer, 
assuming it to have thickness cc X n ,  a similarity solution wherein QIrn is a 
function of 7 = ZX-fi ( N l), m and n being unknown powers. The equation of 
motion (3 .9a )  then requires that n = m+ 1 and that if the pressure -xl 
( I  unknown) then also I = 1 - m - 3n. But the strong favourable pressure gradient 
in I11 is dominated by its D’(X)  = A”’(X) component, implying A ( X )  - Xr+z. 
Also the streamwise velocity in the slip layer matches on to the displacement 
effect A ( X )  in ( 3 . 9 ~ ) )  since 2 is small, and hence m+n+Z = - 2  is required. 
Therefore, for this structure to hold, it is necessary that m = i, n = # and 
I = - 4, and the solution in the slip layer takes the form 

to f i s t  order, with 

Here A, and Po are constants to be determined (the influence of Po is discussed 
later). Substitution into ( 3 . 9 ~ )  gives the equation 

Q = X-&.q(y), 7 = z p ,  (5.1) 

A ( X )  N” - A , / F ,  P ( X )  x P,+o(l). (5-2)  

F(y+*P,F;-ZF;z = - 3 8 ,  (5 .3)  

for the function &(q). However & / a Z - t A ( X )  as y-+co, which imposes the 
condition Fh(00) = (&A,)*, from (5.2). So the above equation for F, yields the 
value 

A ,  = g (5.4) 

and I(,(?) satisfies the Falkner-Skan equation (5 .3) ,  with F,(O) = F;(O) = 0 and 
Fh(00) = 4. Numerical solution gives 

Pi(0) = 0.1488, Po = lim(F,-Q7) = -0.2341. (5 .5 )  
Il+m 

Second, the above behaviour in I11 must be compatible with the partly 
reversed motion in the lower layer I1 as x -+ 0. A three-zone framework for the 
solution in 11, similar to that studied by Stewartson & Williams (1 973)) with the 
vorticity variation largely confined to the neighbourhood of the free shear layer 
centred around Y = - A ( X ) ,  would be implied if Po were zero. For then the outer 

41-2 



644 P. T. Smith 

shearing flow pulling the detached layer forwards would be Y? - iF2+o( l )  
[from (3 .7b ) ] ,  where y = Y + A ( X ) .  But it is manifestly true from the computed 
results that Po > 0. Indeed, a zero value for the pressure P ( X )  at x = 0 would 
suggest a reattachment of layer I1 before X = X, since the driving pressure 
gradient would become favourable, albeit ‘at the last moment ’, a phenomenon 
seemingly unreasonable from a physical standpoint. It can be shown that such 
a three-zone treatment cannot hold therefore. For, if Po is non-zero and the outer 
shear continues to describe the solution down to the detached vorticity layer, 
then the stream function takes the value BP, + O( 1)  throughout that layer. The 
comparatively slow, reversed, flow underneath is driven by a small pressure 
gradient, which must be adverse, and the relevant Palkner-Skan equation 
governing the slow flow is found to have no solution. 

We believe that this difficulty is due entirely to the indeterminacy associated 
with the fluid properties upstream and not to the effect of the backward-moving 
fluid beneath the vorticity layer. Because the fluid in and below the vorticity 
layer is all slowing down as X --f X, - , the indeterminacy is then able to affect 
not only the reversed flow but also the whole forward-moving part of I1 above 
the detached layer, even to first order in x. By contrast, in Stewartson & 
Williams’ (1973) situation the velocities in and above the detached layer are 
increasing far downstream. So there the arbitrariness, again associated with the 
influence of the solution upstream, is basically a lower-order effect and, with a 
self-similar structure assumed, the asymptotic solution is then uniquely deter- 
mined to first order, apart from a multiplicative constant below the shear layer. 
More precisely in our problem, we propose that an adjustment of the flow from 
its outer shear in (3 .7b )  has to take place above the shear layer and, assuming 
a self-similar character to be the most physically realistic (see 3 6), the asymptotic 
structure of the separating layer I1 as X+X,-  consists essentially of four 
regions (i)-(iv) (see figure 5 below), described as follows. 

Starting with region (iv), which lies above the detached layer and in which 
is positive and of order unity, we have to admit a non-uniqueness into the 

solution for the stream function immediately. For purely local considerations 
demand only that the final velocity profile at X = X, takes a forward-moving 
form compatible with the outer condition of (3 .7b)  and with a matching con- 
dition as the vorticity layer is approached. Thus, for 0 ,< X < 1 with 7 order 
one, the expansion 

will satisfy the controlling equations and boundary conditions of I1 provided 
that the functions So(F) and 2Fl(y) satisfy 

Y? = Fo(P) + X 9 q Y )  + O ( F )  (5.6) 

and, further, dPldX < 1. To join this to the solution within the vorticity layer 
(iii) centred about 7 = 0 we must also impose 9 , ( 0 )  = 0 and so the profile 
9, = &y2+2Po will not suffice, but still P0(F) remains undetermined. If we 

suppose that - 
p o ( y )  N K O Y 2 + ~ 1 F 3 + ~ 2 7 4 + . . ,  as T+o, 
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which gives a physically sensible profile, with the coefficients K~ unspecified, 
then for 7 < 1 

(5.9) 

provided that - -  K,, f 0. Hence, in (iii), which being viscous has thickness O ( B ) ,  
so that ( = Y /Xi is order one, we have the solution 

Fl(F) - 3 K l / K o  + o(H) 

Y = X%G&) + O ( X ) ,  (5.10) 

where, from (3.7a), the function Go([) is governed by 

G t  -3GoG; + +GA2 = 0. ( 5 . 1 1 ~ )  

The upper boundary conditions for (iii) are those of merging with the form of 
(iv) as P -+ 0 there, implying 

G o - ~ o ( 2 - + 0  as t - f o c ) ,  (5.11 b )  

while as (+-GO we require Go to remain bounded since the motion beneath 
(iii) is expected to be much slower than in (iii) and (iv). Thus 

GA( -a) = 0. ( 5 . 1 1 ~ )  

The solution for Go follows from Stewartson & Williams (1973) and gives 

G 0 ( - a )  = - ( ~ K ~ ) B C ~  (Co = 1.2521 ...). (5.12) 

Below the vorticity layer there are two regions (i) and (ii), which in practice 
may be treated as an entity, the larger and inviscid region (ii), given by 

0 < Y < Ao/X2, 

being defined implicitly by the outer limit of the relatively thin sublayer (i), 
wherein Y - X N .  The index N here is to be found by the need for a viscous 
interaction to reduce the velocity to zero at  the wall Y = 0. So, if YxM ( M  
unknown) is a function of { = YX-N in (i), we have N = M +  1, from ( 3 . 7 ~ ) .  
Matching (to first order) Y as {-too with its value at  the lower extremity of (iii), 
i.e. at 5 = Ao/xN+2 from (5.2), we obtain M + N + 2  = -8. This is because Y is 
approximately linear at the outer edge of (i) owing to the slight adverse pressure 
gradient [see (5.14) below] promoting the backward motion. Hence M = -+t, 
N = - 8 and in (i) 

Y NN I+g0(<), { = YX8, (5.13) 

implying that P(X) x Po-&PJ% (5.14) 

and, from the equation of motion, 

gIl'-++gog;+$g;2-Pl = 0. (5.15 a)  

The constraints are go(0) = gA(0) = 0, for no slip, and gA(o0) = -(#PI)*, the 
minus sign being necessary to effect the match with (iii). As with (5.3) and (5.4) 
it was convenient to solve the Falkner-Skan problem for go({) numerically. The 
solution has the properties 

3P1 P s t  3P1 -t 
g:(O) = - 1.996 (T) , yo = lim ((G) go+{) = 0-4176 (T) . (5.15b) 

c+= 
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X ( X  = 9,) 

FIGURE 5. The Bow structure in layer If near the terminal point; x e  1. Dotted lines 
indicate the four zones (i)-(iv) and the dashed arrows show their thicknesses. The full 
arrows represent a velocity profile near = 0. (Diagram not to scale.) 

The match just mentioned is in essence an equating of the value of Y a t  the 
lower edge of (iii), 

Y! E - C0(2Ko)* + o(x) (5.16) 

from (5.11) and (5.12), with its value outside (ii), where 

Y z - (#Pl)B X%( Y B  +yo) ,  (5.17) 

to assure conservation of mass (cf. Stewartson & Williams 1973). Setting 
Y = Ao/X2  in (5.17), therefore, equating with (5.16) and neglecting the com- 
paratively small terms, we determine PI in terms of the known constant C, and 
the unknown factor K ~ :  

Pl = y C;(2Ko)Q. (5.18) 

The whole asymptotic structure of I1 has now been set down to f i s t  order for 
s < 1 and is shown schematically in figure 5.  Above the thin shear layer the 
flow adjusts to preserve the mass flux constraint, within the shear layer the 
vorticity is then reduced from the (unknown) constant value just above to zero 
in its lower reaches, and a small reversed velocity is thereby generated which 
persists throughout the wider inviscid zone underneath. Finally the reversed 
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flow is brought to rest in the thin viscous sublayer. The adverse pressure gradient 
plays little part in this ultimate structure except in the slow-moving sublayer. 
The matching process near x = 0 cannot by itself fix even the first-order solution 
here uniquely, however, and accordingly the profile F,(T) above the vorticity 
layer remains undetermined. In  practice i t  is fixed by the solution in X < X,, 
but no conclusive values for the constants K% involved in (5.8) could be drawn 
from the numerical results. It became increasingly difficult to advance the 
integrations near the singular point S = X,, whether by use of the Reyhner & 
Flugge-Lotz scheme or the straightforward technique for U < 0, owing pre- 
sumably to the singular behaviour as X -+ X, - . Further, the comparisons below 
between the theory and the calculations suggest that X ,  M 0.49 and as our 
calculations were not marched beyond X = 0-272 if follows that 

remained negative throughout, whereas ultimately it should become positive. 
So the profile F,(T) could take the shear values &H2 approximately with an 
error (2P,) which did not yield the subsequent contradiction [outlined just 
below (5.5)] beneath P = 0. We may conclude that probably KOis approximately 
0.25 but nevertheless the factor 2P,, though small numerically, is vital to the 
terminal profile F,(H) and introduces the influence of the flow properties in 

Despite the arbitrariness in I1 a formal expansion of the solution near X = X,, 
based on the above analysis, may still be written down for both viscous layers 
I1 and 111, assuming the form (5.8) for So(Y)  as F -+ 0, and we outline it here. 
For Ly < 1, 

x < x,. 

] (5.19) 
A ( X )  = - [ A , / F + A ~ X % -  ~ ~ P , X ~ + A ~ X ~ + O ( X ~ ) ] ,  
P ( X )  =Po - &Pl X'Z - &P2 XY - . . ., 

so that in 111, with 7 as in (5.1), 

'P = X-gF,(q) + X 3  F l ( ~ )  + X$ F2(7) + . . . . (5.20) 

[The strange powers here and in (5.21)-(5.24) below arise from terms such as 
Do and yo induced in (5.5) and (5 .15b) . ]  Here F,, for instance, satisfies the linear 
equation 

with F,(O) = F;(O) = 0. As 7303 the outer shear gives 

l7: + +FoFi - +FA - 3F"F - - 2 - A  
0 1 -  3 2 0  1, 

Fl $(q +A1)2-i%A3, 

F2 N - 6P,V+O(1) 

on setting 2 = 7x8 and expanding in ascending powers of X in the outer con- 
dition ( 3 . 9 ~ ) .  Consistency with the governing equation for Fl then yields the 
result A ,  = ?Do. Further inspection reveals that fixing the values of lower-order 
terms in A ( X )  requires only the values of the pressure coefficients. In  11, when - 
I " 1  

(5.21) 
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FIGURE 6. (a) Variation of ( -A)-* and ?-$ with X. The dashed lines give the corresponding 
slopesatX = X o -  suggestedby(5.1)-(5.5)and (5.27). ( b )  Graphsof  and (P0-P);&-m. 
X, with Po = 0.11700. The dashed straight lines are the predictions of (5.13)-(5.15) and 
(5.27) at X = X,-. 

where, from the equations of motion and (5.19), s6(?), in particular, is given by 

In the vorticity layer (iii), where 6 N 1, 

'P' = E3Go([) + EG,([) + X#G,(t)  + . . . . (5.22) 
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The function G,([ )  is defined by the equation 

Gf-$G,G;+GiG;-G,G;I = 0 (5.23) 

along with the boundary conditions G, N ( K ~  c3 + ~ K , / K ,  + O( 1)) as f: -f co and 
Gl( - 00) = 0. In  the sublayer (i), where 6 N 1 [see (5.13)], 

Y = X+go(g+  XVg,(C)+ ..., (5.24) 

with g1 governed by the differential equation and boundary conditions 

(5.25) 

to join on to the lower reaches of the vorticity layer (iii). The complete solutions 
to (5.23) and (5.25) have not been sought but the matching between (i) and (iii) 
is found to give (cf. Stewartson & Williams 1973) the value 

p2 = WYOPl. (5.26) 

Hence the entire solution is obtainable in principle and depends solely on the 
arbitrary profile S,(r?) above the shear layer. 

Comparisons of the envisaged structure of the solution as X 3 X ,  - with the 
calculated results are on the whole favourable. Figure 5(a) shows graphs of 
(-A(X))-B and (T(X))+ vs. X near the termination of the numerical results. 
According to the analysis both should be linear for X ,  - X < 1 since (5.1)-(5.5) 
and (5.13)-(5.15) give 

T(x) w 0.1488X-4, 7 ( X )  M - 1*996(#P1)*Xf. (5.27) 

The linear forms appear to be verified fairly well and to be not inconsistent 
with a value 

X ,  = 0.49. (5.28) 

Similarly, taking Po = 0.1 1700, a representative value, we plot (Po - P)iae, as well 
as ( - 7)$J against X in figure 6 (b ) .  Again the curves may be roughly approximated 
by a straight line for quite a wide range of X,-X. In  general the theoretical 
slopes of the straight lines also agree not unfavourably with those implied in 
(5.1)-(5.18), assuming K, z 0.25. Thus it is felt that the predictions of the theory 
of the singularity are borne out reasonably well. 

1 g ~ - + L g o g l ; + ~ ’  2 Og;-3gig1 = ‘2, 

gl(0) = g;(O) = OJ g;(W) = -&pZ (~/VI)* 

6. The implications on a finite length scale and discussion 
For an imposed asymmetric boundary condition consistent with the scalings 

of the free-interaction structure set out in 0 3, e.g. for an indentation of length 
O(aK+) and height O(aK+) or an injection rate N ga2p-lv-lK+, the starting 
profile for the integration of the controlling equations (3.7)-(3.9) past the change 
in wall properties would need to be chosen from among those in figures 3 and 4. 
Let us consider an injection or indentation that tends to initiate the interaction 
studied in 3 3, with b,  > 0 in (3.10). Then by analogy with the features of triple- 
deck studies (Smith & Stewartson 1973; Stewartson 1970), as the severity of the 
disturbance is increased we can anticipate that a stage is reached where the 
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necessary starting profile in I1 has to be a separated one. If the size is thereafter 
increased indefinitely, the required starting profiles in I1 and I11 tend towards 
those of the ultimate structure detailed in $5.  A corollary of the above description 
is that, when the asymmetric indentation, say, is of height O(a) then the whole 
free interaction, from the exponentially small perturbations when X is large 
and negative to the eventual separated form at X = X ,  - , must take place 
before the indentation is reached. Hence the flow adjusts, far upstream, to 
produce the compressed upper viscous layer I11 and the partly reversed lower 
layer I1 of $5,  which constitute the oncoming flow that is observed at distances 
only O(a) from the indentation. That a revision of the character of the solution 
first becomes necessary on this length scale is shown by the behaviour of the 
core flow I for X -+ X, - . There we have 

u M U,(y) - €2A, U;(y)/F (6.1) 

from (3.3), (3.4) and (5.2), and so the core flow is no longer a small perturbation 
of the Poiseuille flow when - e, i.e. when x is O(a). In  fact it  is gratifying to 
find that, upon conversion to  a length scale comparable with the width of the 
channel, the rather strange-looking powers and factors involved in the structure 
of the singularity take on a seemingly sensible physical character. In  particular, 
if -x* now denotes distances upstream of this O(a) indentation, and corres- 
pondingly a x  = a ( X ,  - X )  measures distances upstream on the free-interaction 
scale, then, since x = - ex*/a, the thickness of the compressed slip layer in I11 
becomes a?( - E X * / C G ) * ,  from (2.8) and (5.1), i.e. 

K-ta-8( - x *)# (6.2) 

in physical terms. Similarly the thickness of the shear layer (iii) in the lower 
viscous region as X -+ X ,  - is O(as2( - ex*/a)t), or O(a%K-i/x*/&) physically as 
x*+-m, while the relative errors xz and xg in (5.19) and (5.24) indicate cor- 
rections of orders K-h and K-4 when x* - a. Converting the other facets of the 
singularity into physical terms we obtain the following description of the 
oncoming flow for x*+-co but Ix*I < aK+: 

constant -&PI K+( -x*/a)%g (near lower wall), ( 6 . 3 ~ )  
-&K( -x*/a)-*uq (near upper wall), (6.3b) 

(U,(y*/u) - 2 / 5 ~ * ~  UL(y*/a)  (in core), ( 6 . 3 ~ )  

pressure p* M 

(in III), (6.3d) 

(in shear layer), (6.3e) 

\K-+( - x*/a)sg;(c) (in reversed flow), (6.3f) 

(inviscid part), (6.3g) { g'$*)L*/u)-g (viscous sublayer). (6.3h) 
width of reversed flow region z 

A brief formal account of the properties of the fluid motion locally, within 
distances O(a) of the indentation, may therefore be written down from (6.1)-(6.3). 
For 0 < X(z) < y < 1 a forward-moving core flow exists in which u and v are 
O(1) andp is O(K)  when x - 1. Here y = S(x)  defines the position of the detached 
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viscous shear layer. Hence the motion in the core is now governed by the non- 
linear inviscid equations au/ax + av/ay = 0, , 

ap I av av 
uz+v- aY = -- aY 

u N UJy) - (2/5x2) U&) + ...'I 
together with the boundary conditions v = 0 a t  y = I (tangential flow), u = v = 0 
at y = X(x) (no slip at  the shear layer) and 

(In terms of the stream function $, (6.4) gives the vorticity equation V2$ = f ( $ ) ,  
wherefis an unknown function of $.) Near the upper wall a slip layer of thickness 
O(aK-4) is induced, to reduce the velocity to zero a t  the wall; in this layer the 
boundary-layer equations apply : 

au ae au ,au dp a2u -+- = 0, u-+v- =--+- 
ax aij ax aij ax ag2' 

Herey" = (1-y)Kg and B = - v K 4  are 0(1), u+o,(x) as y"-+00 and u = B  = 0 
at y" = 0, where O,(x) is the slip velocity of the core a t  the upper wall. For x 
large and negative the solution is given by 

with o,(x) z 1/5x2, where q = y"( -x)-g from (5.1). Around the free streamline 
y = S(x), whose shape has t o  be determined, a viscous layer of thickness O(aK-4) 
reduces the vorticity from the core value at its upper edge to zero below. Again 
the boundary-layer equations apply, but without a pressure gradient, and 
u + ~ ( x ) ~ + - o ( l )  as T j  = (y-X(x))K)+co, where K(X) is the shear stress of the 
core at y = X(x), and u-+O as 2j-+-co. Beneath the shear layer there is a slow, 
inviscid, reversed flow for 0 < y < S(x). Between that and the lower wall the 
thin viscous sublayer, where 9 = yK* N 1, is invoked to bring the reversed 
velocity to zero at Q = 0. In  this sublayer u N K-8, v N K-% and the adverse 
pressure gradient p'(x) N K-*, so that the relevant boundary-layer equations 
hold with u = v = 0 at Q = 0 and u+ O(x) ( < 0 upstream) as Q + c q  where 
&02+p(x)  = constant. Determination of p(x) then requires matching the stream 
function in the slip layer with that a t  the lower edge of the vorticity layer, in 
the manner of § 5.  That the structure of layer I1 near the singularity X = X, - , 
as revealed in $5, does also provide the asymptotic solution to the shear-layer 
and sublayer flows for x -+ - 00 may be verified. 

In  summary, then, the suggestion is that the local flow at finite distances 
from the obstruction does not involve a direct continuation from the Poiseuille 
flow. Rather, the Poiseuille flow must first be altered, a t  a great distance 
[O(aK+)] upstream, via the whole free interaction; the local flow then joins on 
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FIGURE 7 .  Schematic diagram (not to  scale) of the upstream flow pattern envisaged for a 
channel whose width is abruptly halved. The long, free, interaction converts the oncoming 
Poiseuille flow into a five-tiered structure (0-0) for Iz*I N a : @, core; @, slip layer; 
0, detached shear layer; Q, slow inviscid backward-moving region; Q, slow viscous 
backward -moving region. 

to the terminal form of this interaction, in the manner of (6.5) and (6.7). In  
particular, separation occurs at a position 0.49aKt upstream [from (5.28)], after 
which it is perfectly sensible, physically, that the terminal form should involve 
a singularity of the type discussed in 9 5. For that means that the typical length 
scale undergoes the required shortening, straight from O(aK+) to O(a) [according 
to (6.1)], as the indentation itself is approached. Although, on the long scale 
( X  finite), the asymmetric indentation is actually sited right at the terminal 
point X = X,, i t  is a t  a distance O(a) from that singular region. The main in- 
determinacy in the upstream adjustment is then the precise positioning of the 
indentation relative to the point X = X,, e.g. in (6.5) and (6.7) we could replace 
x by x + d, where d is a finite constant, and still achieve the match with the free- 
interaction solution. In  fact, the influence of the specific conditions downstream 
is first felt only through the displacement factor d. Another point worth noting 
is that the upstream decay of the flow perturbations is algebraic when observed 
from a finite station ( x - f - a ,  but (X-X,I  < l) ,  but is exponential when 
observed on the long scale (X -+ - co). Figure 7 illustrates the proposed structure 
of the high Reynolds number flow on nearing the indentation. 

Comparisons of this theory with the numerical solutions of the full Navier- 
Stokes equations by Hurd & Peters (1970), for a sharp 90" bend in the channel, 
and by Greenspan (1969) and Friedman (1972), for a finite or semi-infinite step, 
are not unfavourable. On the qualitative side, both of these asymmetric dis- 
tortions do produce a sizable upstream adjustment of the flow when the Reynolds 
number is large, as we should predict. For instance, with the step (Greenspan 
1969), the flow separates at one wall (for values of K greater than about 2000) 
and, as the Reynolds number increases, the size of the reversed flow zone grows 
and the shear stress at the other wall achieves increasingly high values upstream. 
Also, the dividing streamline (y = X(x)) upstream in Greenspan, figures 4 and 5, 
certainly exhibits the concave-upwards behaviour (for all values of K )  that is 
implied by the result in (6.3), i.e. S(x)  - 2/5x2 for x large and negative (when 
K B 1). With the 90" bend (Hurd & Peters 1970), the pressure falls sharply a t  
the 'inside' of the bend and the shear stress at the 'outside' falls, in line with 
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F I a m E  8. The pressure gradient at the inner wall (y* = a) ahead of a 90" bend. -, from 
Hurd & Peters (1970) figure 7,  at K = 6400; ---, asymptotic result (6.8). 

$ 0  5 and 6 above (although Hurd & Peters' figure 3 exhibits no flow reversal a t  
li = 6400). A third example of a finite disturbance is provided by Matida, 
Kuwahara & Takami's (1 975) numerical study of flow past an interior blockage. 
They calculated solutions only for moderate Reynolds numbers, but there is 
evidence (see their figure 5 )  of a pronounced reduction upstream in the shear 
stress a t  one wall, and of a corresponding increase at the other walI, which 
does support the present asymptotic description to some extent. Reasonable 
agreement is also indicated by two quantitative comparisons, the first being 
with Hurd & Peters' results for the pressure gradient ap*/ax* at the inner wall. 
Our propoiial is, for z* large and negative (but Ix*l 4 aK$), 

(ap*/ax*),,=, M 2Kg/25(x f d ) 5  (6.8) 
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FIGURE 9. The dependence of the upstream separation point on the Reynolds number K .  
The theoretical prediction of (6.9) (solid curve) is compared with the numerical results of 
Greenspan for a semi-infinite step (crosses) and with the numerical results of Greenspan 
(open circles) and Friedman (filled circle) for a finite step. 

from (6.5), and is plotted with Hurd & Peters’ upstream results in figure 8. 
The constant d, corresponding to an origin shift, is not given by the asymptotic 
theory as yet, but in figure 8 we choose the value d = - 1.4 to ensure close 
agreement at  x = - 2 .  The asymptotic curve then follows the full solutions fairly 
closely up to about x = - 0.2, at which stage the bending itself, starting at x = 0, 
exerts a dominant influence. Second, the separation point x8 = x&, which is 
predicted as 

asymptotically, is compared in figure 9 with that found in Greenspan’s calcula- 
tions for a semi-infinite step and for a finite step (Friedman’s later calculations 
appear to confirm Greenspan’s results on the whole). Again a suitable choice, 
1*96a, for the finite constant ‘O(u)’ in (6.9) is made, to bring (6.9) into line with 
Greenspan’s value a t  K = 12 x lo4. The trend of the purely numerical results is 
then not inconsistent with (6.9) as the Reynolds number increases. A different 
choice for the O(a) term in (6.9) would improve the agreement for the finite-step 
results. Overall, in view of the fact that e = K-+ takes values greater than 0.18 
in the full numerical solutions above (e.g. in figure 8, E = 0.286; also, the separa- 
tion points in figure 9 still occur not far upstream even a t  K = 12 x l O 4 ) ,  whereas 

x&, = - 0*49~K% + O(a) (6.9) 
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the present asymptotic theory certainly requires E < 1, the measure of agreement 
is thought to be encouraging. 

The determination of the entire motion through the asymmetrically distorted 
channel, for -a < x c co, when the Reynolds number is large remains a 
formidable task, of course. We believe, however, that a self-consistent account 
of the flow adjustment that takes place far ahead of any finite change in the wall 
or interior conditions has been put forward in this paper, and that it is of 
practical value. 

I am grateful to the referees for their helpful suggestions on the presentation, 
and in particular to the referee who pointed out most of the full numerical 
solutions referred to above. 
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